Dual Contouring for Domains with Topology
Ambiguity

Jin Qian and Yongjie Zhang *

Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes
Ave, Pittsburgh, PA 15213, USA.

Summary. This paper describes an automatic and robust approach to generate
quality triangular meshes for complicated domains with topology ambiguity. In
previous works, we developed an octree-based Dual Contouring (DC) method to
construct triangular meshes for complicated domains. However, topology ambiguity
exists and causes non-conformal meshes. In this study, we discuss all possible topol-
ogy configurations and develop an extension of DC which guarantees the correct
topology. We first generate one base mesh with the previous DC method. Then we
analyze all the octree leaf cells and categorize them into 31 topology groups. In or-
der to discriminate these cells, we compute the values of their face and body saddle
points based on a tri-linear representation inside the cells. Knowing the correct cate-
gorization, we are able to modify the base mesh and introduce more minimizer points
within the same cell. With these minimizer points we update the mesh connectivities
to preserve the correct topology. Finally we use a Laplacian smoothing technique to
improve the mesh quality. Our main contribution is the topology categorization and
mesh modification. We have applied our algorithm to three complicated domains
and obtained good results.

Key words: Dual Contouring, topology ambiguity, triangular mesh, tri-linear rep-
resentation, saddle points

1 Introduction

Accurate representation of an iso-surface is one important problem in scientific visu-
alization and mesh generation. Given 3D scanned images, we aim to generate quality
triangular surfaces with correct topology. The Marching Cubes (MC) algorithm [14]
visits each cell in the volume and performs local triangulation based on the sign
configuration of the eight grid points. Accelerated algorithms [2, 21] were further
developed to reduce the running time by avoiding visiting unnecessary cells. The
iso-surface inside the cubic cells may have complicated shapes or topology ambi-
guities. To handle them, the function values of the face and body saddles in the
cell are used to decide the correct topology and to generate consistent triangula-
tion [15, 13]. Main drawbacks of MC include uniform and large-size mesh, badly
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Fig. 1. (a) Triangular mesh of a trabecular bone structure with complicated topol-
ogy. (b) and (c) show zoom-in details of a local region with topology ambiguity
(see the red circle). The green line in (b) denotes one non-manifold edge, which is
resolved in (c).

shaped triangles as well as the loss of sharp features. To generate an adaptive iso-
surface, people developed ways to triangulate cells with different levels. However,
when adjacent cells have different resolution levels, cracks are introduced and a fan
of triangles have to be inserted around the gravity center of the coarse triangles
[20]. Octree based Dual Contouring (DC) method [10] combines SurfaceNets [8] and
the extended Marching Cubes [12] algorithms, and it is able to generate adaptive
iso-surfaces with good aspect ratios and sharp feature preservation. Despite being
adaptive and feature-preserving, DC has the drawback that one cell can contain only
one minimizer, leaving possible non-manifold meshes. To address this deficiency, the
vertex clustering algorithm [22, 19] together with topology constraints [17, 3, 11]
was developed. However, for datasets with very complicated topology (see the tra-
becular bone structure in Fig. 1), the existing DC methods fail to recognize all the
topology ambiguities and may lead to non-conformal meshes.

To distinguish the topology ambiguities, we need to study the function properties
inside the cubic cell. Since the function value is only given at the eight grid points
of each cell, we model the interior region with a tri-linear interpolation. Depending
on the function values of these eight grid points, there are 14 unique configurations
for one cell. For some of these configurations, topology ambiguities arise. These
ambiguities are either on the face of the cell or interior to the cell. To discriminate
them, we compute the function values at body and face saddle points [15]. With
respect to the values at the saddle points, we decide whether the iso-surface forms a
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tunnel linking the two grid points or it is separated into several parts. With all these
ambiguities resolved, we develop a new algorithm that modifies the mesh generated
using the standard DC cell by cell. In this algorithm, multiple minimizers may be
introduced to one cell, eliminating the drawback that the DC method has only
one minimizer within one cell. To improve the mesh quality, we relocate the vertex
positions via a Laplacian smoothing technique [25]. Our algorithm keeps the mesh
conformal across cell faces and attains quality meshes with correct topology.

The remainder of this paper is organized as follows: Section 2 reviews related
previous work. Section 3 talks about the standard DC method. Section 4 and 5 dis-
cusses the resolving and triangulation of 2D and 3D ambiguities. Section 6 presents
results and discussion, and finally Section 7 draws conclusions.

2 Previous Work

Marching Cubes. As one of the most popular iso-contouring techniques, the MC
algorithm [14] classifies cubic cells into 256 configurations, depending on whether
the eight vertices are positive or negative. After considering symmetry and comple-
mentary, the 256 cases can be reduced to 14 unique ones. If the two endpoints of
any edge have different signs, then the edge is intersected by the iso-surface. The
intersection point can be estimated via a linear interpolation. For each of the 14
cases, the approximation of the iso-surface can be created by the triangulation of
multiple intersection points. These configurations are incorporated into a lookup
table, and each entry in the table contains a triangulation pattern. Then the MC
visits one cell at a time until all the cells are treated.

The MC is straight-forward and easy to implement; however, it has several draw-
backs. The main problem of MC is that it requires uniform cell structure, which may
lead to huge mesh size. Meanwhile, the vertices in MC are restricted on the cell edges,
and this introduces many elements with small angles. Furthermore, sharp features
in the data are not well preserved. Another drawback is that there is a possibility
for discrepancy in the connection of the shared face of two adjacent cells, which are
caused by un-categorized ambiguities.

Extended Marching Cubes. The MC has been the focus of much further
research to improve its quality of iso-surface representation [13]. To improve the mesh
quality, additional information in the volume, such as surface normals, are utilized
to reduce sharp angles [12]. To make the iso-surface adaptive, people developed ways
to triangulate over cells with different levels. However, when the resolution levels of
adjacent cells are different, there will be cracks and a fan of triangles needs to be
inserted around the gravity center of the coarse triangle [20]. To handle the topology
ambiguities, face ambiguity [16, 5] and interior ambiguity [15, 4] have been discussed.
In order to distinguish these ambiguities, a strategy based on saddle points, where
the first partial derivative of the tri-linear function equals to zero, was proposed.
After considering all the ambiguities, an enhanced look-up table consisting of 31
cases were built [13]. These improved MC methods provide better quality meshes
and handle ambiguities; however, they still lack the capability to mesh large datasets
adaptively.

Dual Contouring. The Dual Contouring (DC) method [10, 24], which com-
bines SurfaceNets [8] and the extended Marching Cubes [12] algorithm, generates a
dual mesh from an adaptive octree instead of a uniform one. The adaptation of the
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octree can be controlled by certain error functions. It was first designed for the tri-
angulation from Hermit data [10] and then extended to tetrahedral and hexahedral
mesh generation [24, 23], as well as domains with heterogeneous materials [26]. The
DC has several advantages compared with MC. Most importantly it is able to handle
large datasets using an adaptive octree and preserves sharp features well. However,
a problem of DC is the restriction that each leaf cell only holds one minimizer. Such
restriction leads to non-manifold meshes and thus makes the accurate representation
of topology ambiguities impossible. As a follow-up, vertex clustering, which inserts
multiple minimizers inside one leaf cell, was introduced [22, 19]. It was further ap-
plied with topology constraints so that the resulting contours are always 2-manifold
[17, 3, 11]. However, these techniques still lack the capability of recognizing all the
topology ambiguities.

3 An Overview of Standard Dual Contouring

The DC method [10] was developed based on an adaptive octree data structure,
which achieves denser cells along the boundary and coarser cells inside the volume.
The procedure begins with splitting the volume data into octree cells iteratively
until the mesh adaptation is satisfactory. The mesh adaptation can be controlled
adaptively by using a feature sensitive function F = S"(|f** — fi|/ 7 f*), where f
is a tri-linear interpolation function inside the cell [24]. This feature sensitive error
function measures the iso-contour difference between two neighboring octree levels.
When the error is below a pre-defined tolerance, the octree splitting ceases. In order
to obtain triangles with good quality, we restrict the neighboring level difference
to be less than or equal to two. One minimizer was computed for each leaf cell to
minimize a predefined Quadratic Error Function (QEF), QEF (x) = 3. (ni-(x—p:))?,
where p; and n; are the position and normal vectors at the intersection points
between the iso-surface and octree cell [6, 7].

The next stage is to analyze each sign change edge, whose one endpoint lies inside
the internal volume while another lies outside. Since the adaptive octree consists of
leaves with different resolution levels, each leaf may have neighbors at different levels,
i.e., an edge in one leaf cell may be divided into several edges in its neighboring cells.
In deciding which edge should be analyzed, we follow the DC method and always
choose the minimal one. These edges are those of leaf cells that do not properly
contain an edge of a neighboring leaf. In this adaptive octree, the minimal edge
is either shared by four cells, and we connect the four QEF minimizers to form a
quadrilateral (quad); or it is shared by three cells and we form a triangle, and we
obtain a hybrid mesh consisting of quad and triangular elements. Finally we divide
these quads to form a triangular mesh. One splitting diagonal is chosen to achieve
better aspect ratios. By now an adaptive triangular mesh is created. Several variants
of DC method have been developed as well, which introduce better topology and
mesh quality [1, 9, 18, 17, 22].

Despite being adaptive and feature-preserving, one drawback of such DC method
is that it fails to handle ambiguities in the original topology and it may introduce
non-manifold surfaces, that is, an edge on the contour may be shared by more
than two polygons. These surfaces are not only troublesome in visualization but
also are problematic in further mesh processing techniques such as smoothing and
parameterization. Therefore the ambiguities must be resolved.
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4 Modified DC for 2D Ambiguities

Ambiguity arises when the iso-surface can be represented using different approaches
and there are multiple ways to connect the minimizers. To capture the ambiguities,
we need to categorize all the cells into different cases and then adjust the mesh
topology accordingly. We first discuss the simple 2D ambiguity problem followed by
the complex 3D problem. Here are some definitions used in the categorization.

Positive grid point: A positive grid point is a grid point whose function value is
greater than or equal to the given iso-value.

Negative grid point: A negative grid point is a grid point whose function value
is less than the given iso-value.

Joined grid points: If two grid points within the same cell meet the following
two criteria, we call them joined grid points: (1) These two points have the same
positive/negative sign; (2) there is a path between these two points, along which the
interior function value between them does not change sign.

Separated grid points: If two grid points within the same cell only meet the first
criterion above, we call these two points separated grid points.

4.1 Resolving 2D Ambiguities

To begin with, we now resolve the simple 2D ambiguities. Since the function values
are only given at the four corners of each quadtree cell, here we choose a bi-linear
interpolation, F'(¢, 1), which is written in terms of the function values at four corners
Fij (/L?] =0, 1)

F(&mn) = Foo(1 = &)(1 —n) + For(1 = &)n 1)
+ Fioé(1 — 1) + Fuién.

Depending on the sign of the four grid points, we summarize all 2D possibilities
into 4 categories (Cases 0, 1, 2, and 3) with the consideration of symmetry and
complementary (reversing positive/negative signs). The meshes generated via the
standard DC are shown in Fig. 2. DC generates a series of quads first and then
splits them into triangles, therefore when we discuss about triangulation, we only
consider how to generate the quads. The cell may only have one positive grid point
(Case 1); or it has two neighboring positive grid points (Case 2); otherwise the cell
has two positive grid points forming one diagonal: these two grid points can be either
joined (Case 3-1) or separated (Case 3-2).

From Case 3-1 and Case 3-2 it is obvious that ambiguity arises when two grid
points in one diagonal have the same sign. The standard DC method falls short to
recognize this ambiguity and creates non-manifold meshes, as shown in Fig. 2. To
discriminate these two possibilities, we find out the saddle point, where the first
partial derivative for each direction is zero, and then compute the function value at
the saddle point. If that value is positive (greater than or equal to the iso-value), we
can tell that the positive zone spreads across the cell so that the two positive grid
points are joined; otherwise the positive zone is divided and then the two positive
grid points are separated.

After resolving these two ambiguous cases, there are a total of five topology cases
for a 2D cell (see Fig. 2).
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Case 0 Case 1 Case 2 Case 3-1 Case 3-2

Fig. 2. 2D topology possibilities and the meshing results via the standard DC. The
cell has one or two positive grid points (red), one minimizer (blue) and up to six
neighboring cell minimizers (green). The iso-surface (yellow) intersects the cell.

Simple configurations: Case 0, 1, 2 have no ambiguities. These cases can be
meshed using the standard DC.

Configuration 3: There are two possible cases:

Case 3.1: Positive grid points are joined inside the cell; and the iso-surface spreads
across the cell;

Case 3.2: Positive grid points are separated; and the iso-surface breaks into two
pieces inside this cell.

4.2 Handling 2D Ambiguities in Triangulation

With the two ambiguities resolved, we are able to re-mesh the 2D iso-surface. For
those simple cases, the traditional DC method is sufficient to represent the correct
topology. For the two ambiguous cases, re-meshing is necessary. We first need to
insert two new minimizers inside the cell. The minimizers are located on the inter-
section points of two tangent lines to the iso-surface. Next we check all the quads
sharing the original minimizer, and then re-connect the quads using the schemes
shown in Fig. 3. The old minimizer is then deleted since no quads connect to it
anymore. Till now we obtain a hybrid mesh consisting of quads and pentagons. For
a quad we pick one diagonal and divide it into two triangles. For a pentagon, we
split it into three triangles.

|

Minim'zerL
—

Minimizer 1
er 2

/ \

Case 3-1 Case 3-2

Mini

1

Fig. 3. Resolving 2D ambiguities. Each cell has positive grid points (red) and min-
imizers (blue); the green nodes denote the minimizers of neighboring cells.
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5 Modified DC for 3D Ambiguities

Resolving 3D topology ambiguities within each cell is much more complicated. We
first discuss how to resolve these ambiguities and then present the re-meshing tech-
niques to represent the iso-surface accordingly.

5.1 Resolving 3D Ambiguities

In 3D octree cells the function values are given only at the eight grid points, similarly
here we choose a tri-linear interpolation, F'(€,n, (), which is written in terms of the
function values at the eight grid points, Fijx (4,7, k = 0,1):

F(&n,¢) = Fooo(1 = &)1 —n)(1 = ¢)
+ Foor1 (1 —€)(1 = n)¢ + Foio(1 — &n(1 =)

+ Fo11(1 — &)n¢ + Froo€(1 — n)(1 —¢) (2)
+ Fi01£(1 — )¢ + Fi10én(1 — ()
+ F111€nC.

Depending on the sign of the eight grid points, there are 28 = 256 possible config-
urations for one cubic cell. Considering all the symmetry and complementary, the
256 situations can be reduced to 14 fundamental cases, as shown in Table 1.

Some of these fundamental cases have topology ambiguities, which can be cate-
gorized into two groups: face ambiguity and interior ambiguity. Face ambiguity
arises when two positive grid points occupy one cubic face diagonal, as shown in Fig.
4(a-b). The four edges of this face are all sign change edges, and we need to decide
how to triangulate this local region. If the mesh is built in an inconsistent way,
discrepancies such as a gap may be introduced between adjacent cells.

Meanwhile, there are additional interior ambiguities inside the cubic cell, as
shown in Fig. 4(c-d). In these situations the iso-surface can either be several sepa-
rated surfaces or a tunnel piece passing through the cubic cell. These interior struc-
tures generally do not cause immediate discrepancies, but they decide what the
topology looks like inside the cell.

(a) (b) (c) (d)

Fig. 4. Example of 3D face and interior ambiguities. The cubic cell has two posi-
tive grid points (red) and the iso-surface (yellow) intersects with it. (a-b) One face
ambiguity; and (c-d) one interior ambiguity.
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Table 1 14 fundamental cases for 3D cubic cells with meshes generated using the
standard DC. Each cell has a few positive grid points (red), one minimizer (blue)
and several minimizers of adjacent cells (green).

T

=

Case 0 Case 1
Case 4 Case 5

Case 10 Case 11

Case 12 Case 13

In order to discriminate one topology from another, we again analyze the func-
tion values of the face and interior saddle points. Similar to 2D saddle points, we find
the saddle points by setting all the first partial derivatives to be 0. When analyzing
face ambiguities, the saddle points are confined to stay on that very face; therefore
the tri-linear interpolation degenerates to a bi-linear one, which leads to a single
root. On the other hand, for interior ambiguities, the saddle points are set to be
inside the cubic cell; so we need to solve a quadratic equation with double roots. If
the computed saddle points lie outside the specific surface or the cell, it is ignored.
Till now we can compute the function values at these saddle points, and use them
to categorize the topology.
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After considering all face and interior ambiguities, a comprehensive set of 31
cases are summarized. Since this set is actually a detailed version of the 14 funda-
mental cases, therefore we use labeling notations inherited from the 14 cases. The
labeling of these 31 cases denotes the topologies they belong to: the first number
denotes the case number in the original 14 fundamental cases (see Table 1); the
second indicates the resolution of a face ambiguity; in the end the last index clarifies
an interior ambiguity. These 31 cases are described as follows (see Table 2):

Simple configurations: Case 0, 1, 2, 5, 8, 9 and 11 have neither face ambiguity
nor interior ambiguity. These cases can be meshed using the standard DC method.

Configuration 3: There is only one ambiguous face. After resolving this face, two
different cases exist:

Case 3-1: Positive grid points are separated;

Case 3-2: Positive grid points are joined inside the face.

Configuration 4: There is no face ambiguity but one interior ambiguity. Resolving
such interior ambiguity leads to two cases:

Case 4-1-1: Positive body diagonal grid points are separated;

Case 4-1-2: Positive grid points are joined inside the cubic cell and thus form a
“tunnel” structure.

Configuration 6: There is one ambiguous face; and if the positive grid points
are separated on this face, additional interior ambiguity arises: the two positive grid
points can be either separated or joined inside the cube. Three cases are possible:
Case 6-1-1: Positive grid points on the ambiguous face are separated and they are
not joined inside the cube;

Case 6-1-2: Positive grid points on the ambiguous face are separated and they are
joined inside the cube;

Case 6-2: Positive grid points are joined on the ambiguous face.

Configuration 7: There are three adjacent ambiguous faces sharing one negative
grid point. If all the positive grid points on the ambiguous faces are separated, the
interior ambiguity arises: the common negative grid point can be separated from
other negative grid points or joined inside the cube. Considering the number of face
ambiguities, five distinct cases are possible:

Case 7-1: All positive grid points are separated and they are not joined inside the
cube;

Case 7-2: Positive grid points on one ambiguous face are joined while others are
separated;

Case 7-3: Positive grid points on two ambiguous faces are joined while others are
separated;

Case 7-4-1: All positive grid points are joined on the three ambiguous faces; the
negative grid point shared by three ambiguous faces is separated from other negative
grid points;

Case T-4-2: All positive grid points are joined on the three ambiguous faces;
the negative grid point shared by three ambiguous faces is joined inside with other
negative grid points.

Configuration 10: For these configurations two ambiguous faces need to be han-
dled. By reversing the positive/negative signs, we are able to ensure that at least
one of the ambiguous faces has separated positive grid points. Particularly, we rotate
the cubes so that the positive grid points on the top face are separated. When the
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5

Case

Case 7-1

Case 7-4-2

Case 10-1-2

4-1-2

Case

Case 6-2

Case 7-4-1

Case 10-1-1

Case 4-1-1

Case 6-1-2

7-3

Table 2 31 cases for 3D cubic cells with meshes generated using the modified DC.
Each cell has a few positive grid points (red), several minimizers (blue) and some

minimizers of adjacent cells (green).

Case 3-2

6-1-1

Case 7-2

8

Case
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Table 2 (continued)

Case 13-3

Case 13-5-1 Case 13-5-2

positive grid points on the two ambiguous faces are both separated, interior ambi-
guities may be introduced. There are three cases belonging to Configuration 10:
Case 10-1-1: Positive grid points on the top and the bottom faces are both sepa-
rated; no positives grid points on the body diagonal are joined from inside.

Case 10-1-2: Positive grid points on the top and the bottom faces are both sepa-
rated; however, two grid points on the body diagonal are joined.

Case 10-2: Positive grid points on the top face are separated; however, positive
grid points on the bottom are not. In this case the iso-surface forms a typical saddle
shape.

Configuration 12: There are two face ambiguities in this configuration. By revers-
ing the positive/negative signs, we are able to ensure that the positive grid points
are separated on at least one ambiguity face. Interior ambiguity arises when the
positive points on both ambiguous faces are separated. There are a total of four
cases.

Case 12-1-1: Positive grid points are separated on both ambiguous faces; no body
diagonal consisting of two positive grid points is joined from inside.

Case 12-1-2: Positive grid points are separated on both ambiguous faces; one body
diagonal consisting of two positive grid points is joined inside the cube.
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Case 12-2: Positive grid points are joined in one face while separated in another
face. Depending on which one is joined, a mirror case is also alike.

Configuration 13: This configuration is the most complex one since its six faces
are all ambiguous. By reversing the positive/negative, we can always ensure that
the number of faces with separated positive grid points is greater than or equal to
the number of faces with joined positive grid points. When that number is three,
additional interior ambiguities may also arise. These ambiguities lead to a total of
six distinct cases.

Case 13-1: Positive grid points are separated on all six ambiguous faces.

Case 13-2: Positive grid points are separated on five ambiguous faces while joined
on the other one.

Case 13-3: Positive grid points are joined on four ambiguous faces while separated
on the other two. Due to the nature of the tri-linear interpolation function [4], these
two other faces must be adjacent to each other.

The remaining cases all have three ambiguous faces with positive grid points
joined. These three faces must share one common grid point due to the nature of
the tri-linear interpolation function. Depending on whether the common grid point
is positive, different cases are possible. If yes, interior ambiguity arises.

Case 13-4: The common grid point of the three joined faces is negative.

Case 13-5-1: The common grid point is positive, and it is separated from all other
positive grid points.

Case 13-5-2: The common grid point is positive, and it is separated from other
positive ones; all negative points are joined from inside. A complementary case is
also possible when we reverse all the positive/negative signs. In that case, all posi-
tive grid points are joined inside the cell while all negative ones are separated.

All of these 31 cases are shown in Table 2. For each leaf cell in the octree, we
categorize it into one of the cases above. Once the classification is made, we need to
modify the dual mesh and incorporate the specific topologies.

5.2 Handling 3D Ambiguities in Triangulation

It is obvious that resolving 3D ambiguities is much more complicated, not only in
terms of the number of cases but also in terms of the complexity of each case. To
incorporate these features, we traverse all the octree leaf cells to insert minimizers
and to re-connect the triangles.

5.2.1 Adding Minimizers

To represent correct topologies, we may need multiple minimizers within one cubic
cell. In order to add appropriate number of minimizers we need to analyze the
intersections between the cubic cell and the iso-surface. For each cell face, there are
four types of intersection according to the tri-linear interpolation in Equation (2):

Type 0: The iso-surface does not intersect the cell face; and no minimizer is needed
at all.

Type 1: The iso-surface intersects the cell face only once; and one minimizer should
be inserted nearby. If one face is adjacent to another one which also needs new
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minimizers (Type 1, Type 2), these two faces can share one common minimizer. The
minimizers are located in the position where the QEF is minimized. In 2D, these
minimizers are actually the intersections of the tangential lines to the isosurface.
Type 2: The iso-surface intersects the cell face twice; in this case we need at least
two minimizers to approximate the iso-surface.

Type 3: The iso-surface cuts through the cell forming one “tunnel” inside; at least
three minimizes are needed to approximate the interior structure.

5.2.2 Re-Connecting Triangles with New Minimizers

With enough minimizers we are able to re-connect them so that the resulting trian-
gulation reflects the correct topology. Similar to 2D cases, we first (1) find all the
quads sharing the original minimizer; and then (2) decide which sign change edges
these quads associate to; in the following we (3) associate the sign change edge with
the appropriate minimizer(s); in the next stage we (4) re-connect the quads or pen-
tagons using the new minimizers; and finally (5) split the quads and pentagons to
form a triangular mesh.

Among these five steps the third one is the most critical. After the association
between the sigh change edge and the minimizer is created, all quads associating to
that sign change edge are connected to the very minimizer(s). To illustrate, we show
an example depicting Case 3-2 with details, see Fig. 5.

(b)

Fig. 5. The 3D re-meshing for Case 3-2. The numbers denote edge indices while
the capital letters denote minimizers. The red points are positive grid points, the
blue nodes are minimizers of this cell, and finally the green ones are minimizers of
adjacent cells.

In the beginning we have a base mesh created using the standard DC, see Fig.
5(a). To incorporate the correct topologies we take the following two steps:

Step 1 (Insert multiple minimizers): We check the intersection between each
cell face and the iso-surface. Only one intersection belongs to Type 2 (back face)
while all the others belong to Type 0 or 1. Therefore two new minimizers (M and
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P) are inserted near that face as shown in Fig. 5(b). Note that in the adjacent cell
that shares the ambiguous face, similar techniques are carried out as well; therefore
two new minimizers (N and Q) of the adjacent cell are also inserted.

Step 2 (Re-connect the mesh): We traverse the quads sharing the original
minimizer, node D, find their sign change edges, and then associate each of them to
one minimizer. At this point we have the following six configurations:

1. Quad DBJL associates with the sign change edge [5], and it is associated with
minimizer M, forming Quad M BJN.

2. Quad DLHE associates with the sign change edge [3], and it is associated with
minimizer M, forming Quad MNHE.

3. Quad DCKL associates with the sign change edge [6], and it is associated with
minimizer P, forming Quad PCKQ.

4. Quad DLIG associates with the sign change edge [4], and it is associated with
minimizer P, forming Quad PQIG.

5. Quad DCAB associates with the sign change edge [2], and it is associated with
two minimizers M and P at the same time, forming Pentagon M PCAB.

6. Quad DEFG associates with the sign change edge [1]. Similar to Quad DC AB,
it is also associated with P and M altogether, forming Pentagon M EFGP.

By now we have traversed all the quads sharing the original minimizer D and
re-constructed a hybrid mesh consisting of quads and pentagons. This hybrid mesh
can be easily split into triangular meshes. Following the same procedure we are able
to handle any of the 31 cases and incorporate correct topologies into the triangular
mesh. Fig. 6 shows the meshes of five regions before and after re-connections. These
figures show the topology Case 3-1, Case 3-2, Case 4-1-2, Case 7-4-2 and Case 10-2,
respectively. The green lines or the blue node denote non-manifold situations, where
one edge is shared by more than two triangles, or one vertex whose neighborhood
is not like a disc. Note in (c), along the red dashed axes, an hollow tunnel topology
is missing, and the our re-connection algorithm recovers it. In these five figures, it
is obvious that the topology ambiguities are resolved and appropriate meshes are
built.

Till now the mesh is topologically correct; however, it may have low-quality
triangles that influence the convergence and stability of the numerical solutions.
Therefore, we need to take an additional step to relocate these vertices as well as to
improve the mesh quality.

To begin with, we need a metric to measure the quality of a triangle. Here,
we choose the aspect ratio, defined as 2 * 7, /rout, where 7;, is the radius of the
inscribed circle, and 7,4+ is the radius of the circumcircle. A perfect triangle has
the aspect ratio of 1; therefore our goal is to increase the ratio toward 1. To attain
this goal, a Laplacian smoothing technique is applied. Laplacian smoothing is a fast
and efficient method to smooth a triangular mesh. For each mesh vertex, Laplacian
smoothing relocates its position to the weighted average of the nodes connecting to
it.

6 Results and Discussion
The developed algorithm is automatic and robust for meshing domains with topology

ambiguities. We have applied our algorithm to three complicated datasets (Figs. 1,
7, 8). Our technique generates quality meshes with ambiguities resolved and feature
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(a) (b) (c)

Fig. 6. Meshes of five regions before (first row) and after (second row) the re-
connection. The red circles indicate the locations of the ambiguity, green lines or
the blue dot indicate non-manifold situations, and red dashed lines denote the axes
of a tunnel topology. (a) Case 3-1; (b) Case 3-2; (c) Case 4-1-2; (d) Case 7-4-2; and
(e) Case 10-2 examples.

preserved. The computations were based on a PC with Intel Q9600 CPU and 4GB
DDR-II memories. Table 3 shows statistics of the generated triangular meshes. The
mesh size is increased after resolving the ambiguities, since one leaf cell may contain
multiple minimizers. The mesh quality is improved greatly after smoothing. Note
that the computation time includes the time for the base mesh generation, topology
preservation, and the following smoothing. The smoothing process takes most of the
time and has an approximately linear running time.

Our technique is a combination of DC and MC. When we generate the base
mesh, we analyze the sign change edges and construct a dual of the octree; when
we resolve and approximate the ambiguities, we traverse all the octree leaf cells to
re-connect the mesh. In this manner we have the advantages of both DC (can handle
large datasets with adaptive octree; better qualities) and MC (can preserve topology
ambiguities). Furthermore, to make meshes conformal across cell boundaries, the re-
meshing templates should be carefully designed so that no discrepancies or gaps exist
on both sides of one cell face. Meanwhile, only face ambiguities influence the meshes
in other cells. As a result, if all face ambiguities are handled consistently, as what
we have done in our algorithm, we will obtain conformal meshes everywhere.

7 Conclusion

We have developed an efficient and automatic method to generate triangular iso-
surfaces with correct topology. We begin from the standard DC method and generate
one mesh without considering topology ambiguities. To resolve these ambiguities,
we first model the interior regions with a tri-linear interpolation, and then compute
the face and body saddle points, and then discuss all the 31 possible configurations.
After categorizing all the cells into different topology groups, we traverse these cells
and re-connect the triangles according to a set of pre-defined templates. In the end
we relocate the vertex positions and thus improve the mesh quality. We have already
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Table 3 Statistics of the generated meshes

Mesh Size Aspect Ratio Time Ambiguity
Model Mesh (Vert §, Elem ) (Worst, Best) (s)  Cell #

Trabecular Bone 1| Original (98,694, 197,636) (0.0006 1.0)

(Fig. 1) Smoothed (98,944, 197,884)  (0.158, 1.0) 28 887
Trabecular Bone 2| Original (134,925, 271,224) (0.000066, 1.0)

(Fig. 7) Smoothed (135,911, 272,150) (0.168, 1.0) 36 241

Foam Original (186,629, 374,420) (0.030 1.0)

(Fig. 8) Smoothed (187,046, 374,824)  (0.16, 1.0) 51 388

(a)

Fig. 7. (a) Triangular mesh of another trabecular bone structure. (b) and (c) show
zoom-in details of a local region with topology ambiguity (see the red circle). The
green line in (b) denotes one non-manifold edge, which is resolved in (c).

applied our approach to three complicated datasets and obtained good results. In the
future we will extend our algorithm to domains with multiple components. Instead
of continuous function values, these data grids have distinct component IDs. Since
one cell may have up to eight components, the ambiguity resolving is much more
complicated and deserves great attention.
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(®)

(@)

Fig. 8. (a) Triangular mesh of a foam material. (b) and (c) show zoom-in details
of a local region with topology ambiguity (see the red circle). The green line in (b)
denotes one non-manifold edge, which is resolved in (c).
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